

Felmérési technológiák a 21.században

PAPPERIK SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR BÚDAPEST

2. Dátumtranszformáció kvaternióval

3. Kettős kvaternió

- A térbeli hasonlósági transzformáció, különösen a térbeli tájékozás az egyik legfontosabb és legkritikusabb feladat a geodéziában, fotogrammatriában, navigációban, lézerszkenner és LiDAR mérések feldolgozásában, robotkar manipulálásában, anibációban és számos más területen.
- A térbeli adatokhoz helymeghatározó adatok kapcsolódnak, amelyeket koordinátákkal adunk meg.
- A koordináta rendszer alapja egy geodéziai dátum, amely meghatározza a Föld méretét és alakját, a koordináta rendszer kezdőpontját és tájékozását. A Föld térképezéséhez használjuk az előzőekben definiált koordináta rendszert.
- A geodéziai dátumok sokasága létezik, hiszen minden ország különböző, saját dátumot alkalmaz. Példaként említhetjük Magyarországot, ahol geodéziai dátumtranszformációt használunk az EOV és GK rendszerben adott alaphálózati pontok koordinátáinak WGS84 rendszerbe történő transzformálásához.

- A hasonlósági transzformáció esetén <u>a méretarány minden irányban</u> <u>azonos értékű.</u>
- A hétparaméteres hasonlósági transzformációt elterjedten alkalmazzák dátumtranszformációhoz, egyszerűsége, hatékonysága, egyedisége és szabatossága miatt.
- A transzformáció három eltolás, egy méretarány és három forgatási paraméter meghatározásából áll.
- Következésképpen a koordináták az egyik koordináta rendszerből egy másik koordináta rendszerbe transzformálhatók
 - a koordinátarendszer kezdőpontjának eltolásával,
 - elforgatások alkalmazásával és
 - a méretarány megváltoztatásával.

- A gyakorlatban a hét transzformációs paraméter nem minden esetben ismert. Azonban, ha a közös pontok koordinátái mindkét koordináta rendszerben adottak, a transzformációs paraméterek az előbbiek szerint meghatározhatók.
- Három közös pont elegendő a transzformációs paraméterek meghatározásához.
- Néhány népszerű hétparaméteres hasonlósági transzformációs modell használatos a gyakorlatban, mint a Bursa-Wolf, vagy ismertebb nevén a Helmert-féle transzformáció, amellyel jelen előadás tárgya, vagy a Molodensky-Badekas.
- A hasonlósági transzformációs modellt gyakran egyszerűsítik, linearizálják a paraméterek könnyebb kiszámítása céljából. A létező hétparaméteres modellek megoldása a hagyományos algoritmusok felhasználásával a forgásszögek maghatározásán alapul. Újabban a forgásszögeket kvaterniókkal helyettesítik, az új modell kettős kvaternión alapul.

 Az előadásban ismertejük a kettős kvaternió alkalmazását a geodéziai dátumtranszformációhoz, a Bursa-Wolf hétparaméteres hasonlósági transzformációs modellben.

 Sir William Rowan Hamilton (1805-1865) 1843-ban fedezte fel a kvaterniókat egy 3D vektor ábrázolására. A kvaternió nagyon alkalmas a forgatás egységsugarú gömbön történő leírására.

A Q kvaternió komplex számként a következőképpen definiálható

$$Q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} = q_0 + \mathbf{q}$$

ahol

$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j$$

és a képzetes rész $q = q_1 i + q_2 j + q_3 k$

egy 3D vektort jelöl.

A Q kvaternió oszlopvektor formában is kifejezhető az (1 i j k)

egységvektorok felhasználásával

$$\boldsymbol{Q} = (\boldsymbol{q}_0 \ \boldsymbol{q}_1 \ \boldsymbol{q}_2 \ \boldsymbol{q}_3)^T = (\boldsymbol{q}_0 \ \boldsymbol{q}^T)^T$$

ahol

$$\boldsymbol{q} = (q_1 q_2 q_3)^T$$

egy 3D vektort és T a transzponálást jelöli.

Broome híd Dublin Írország

Sir William Rowan Hamilton

Sir William Rowan Hamilton

- Miután Horn sikeresen alkalmazta a kvaterniót 144 évvel annak felfedezése után - a térbeli tájékozáshoz Horn (1987), a forgatási mátrix tömör leírása továbbá az eljárás hatékonysága a módszert a figyelem középpontjába állította.
- Jelenleg a kvaterniókat sikeresen alkalmazzák a **szilárd test mozgásának** elemzéséhez Josepf at al (2003), Kim at al. (2004) és geodéziai dátumtransz-formációhoz Yang (1999), Shen at al. (2006), Zeng at al (2012).
- Ám, ha a térben egységkvaterniót használunk a forgatás leírásához, hét transzformációs paramétert kell kiszámítanunk, először a forgatásokat majd a méretarányt és végül az eltolásokat.

- Walker bevezette a kettős kvaterniókat a hasonlósági transzformáció megoldásához.
- Egyetlen képlet alkalmazásával a kettős kvaternió valós és kettős részének felhasználásával kifejezhető a forgatás és az eltolás, lehetővé téve a hat paraméter egyidejű számítását, azaz a három forgás szögét és a három eltolási paramétert Walker at al (1991).
- Hasonló megoldást mutatott be Daniilidis (1999). Azonban sem Walker at al. (1991) sem Daniilidis (1999) sem Vanicek at al. (2002) nem vette figyelembe a méretarányt a transzformáció során.

- Willian Kingdom Clifford (1845-1879) tovább fejlesztette a kvaterniót, a tizenkilencedik században felfedezte a kettős kvaterniót és alkalmazta merev test transzformációjához Clifford (1873, 1882).
- Nagyon közeli kapcsolat van a kettős kvaternió és a klasszikus térbeli kinematikában használatos ún. Chasles elmélet között Chasles (1830), Murray at al (1994).

Willian Kingdom Clifford

- A Chasles elmélet szerint <u>bármely merev test transzformációja leírható</u> csavarmozgásként, azaz egy tengely körüli forgatással és a tengely irányú eltolással.
- Tehát a kettős kvaternió megfelelő az elforgatás és az eltolás leírására.
- Következésképpen a létező megoldások két csoportba sorolhatók, nevezetesen iterációs módszerek és zárt képletek alkalmazása.
- Iterációs módszer általában forgatási mátrixot használ merev test transzformációjához, a kezdő értékek közelítő ismerete szükséges a linearizáláshoz, amely gyakran hibát eredményez a számítások során.
- Ezzel szemben a zárt képletek alkalmazása esetén szükségtelen a kezdeti értékek közelítő ismerete, ezért ez a módszer napjainkban az érdeklődés középpontjába került. Legfontosabb előnye a zárt képletek alkalmazásán alapuló módszernek, hogy a lehető legjobb transzformációt biztosítja egy lépésben.

- A kettős kvaternió tulajdonképpen a kvaternió matematika és a kettős számelmélet összeláncolása (concatenation).
- Amíg egy kvaternió négy skalár értékből áll, egy kettős kvaternió nyolc skalár értékből áll.
- Kettős kvatrnió nyolc valós számból álló összetett adatszerkezetként vagy két közönséges kvaternió szorzataként értelmezhető. Kettős kvaterniók, kvaterniókból és kettős számokból állnak az alábbiak szerint

$$\widehat{\boldsymbol{q}} = \boldsymbol{r} + \boldsymbol{\mathcal{E}} \boldsymbol{S} \tag{1}$$

az **r** és **s** <u>mindkettő valódi kvaternió</u>, ezeket **valós** és **kettős résznek** nevezzük, ε a kettős művelet jele (dual operator)

A kettős kvaternió a valódi kvaterniókhoz hasonlóan értelmezhető

$$\widehat{q} = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) \widehat{n} \end{bmatrix}$$
(2)

ahol az \hat{n} kettős vektor egy térbeli 3D egyenest jelöl amely körül a koordináta rendszer elforgatásra, illetve amely irányába eltolásra kerül, a $\hat{\theta}$ az elforgatás és eltolás kettős szögét jelöli. Az \hat{n} kettős vektor az elforgatás és eltolás $\hat{\theta}$ kettős szöge az alábbiak szerint adható meg:

$$\widehat{\boldsymbol{n}} = \vec{\boldsymbol{n}} + \boldsymbol{\varepsilon} \vec{\boldsymbol{p}} \times \vec{\boldsymbol{n}}$$
(3)

$$\widehat{\theta} = \theta + \varepsilon d \tag{4}$$

ahol \hat{n} egy olyan egységvektor, amely meghatározza a forgatás tengelyét és az eltolás irányát

- Az egyenes θ szöggel kerül elforgatásra a P ponton átmenő vektor irányában és d távolságra kerül eltolásra az vektor által meghatározott irányban.
- Összehasonlítva az egység kvaterniót a kettős kvaternióval, ugyanaz a transzformáció hajtható végre, **először eltolva** az eredeti koordináta rendszert d távolságra az \vec{n} vektor irányában **majd elforgatva** azt θ szöggel.

Elforgatás és eltolás kettős kvaternióval [Wang at al. ,2014, Fig. 1.]

Kettős kvaternió

• A (3) és (4) egyenletet behelyettesítve a (2) egyenletbe az alábbi egyenleteket kapjuk

$$\boldsymbol{r} = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) \vec{\boldsymbol{n}} \end{bmatrix}$$
(5)

$$\mathbf{s} = \begin{bmatrix} -\frac{d}{2}\sin\left(\frac{\theta}{2}\right) \\ \frac{d}{2}\cos\left(\frac{\theta}{2}\right)\vec{\mathbf{n}} + \sin\left(\frac{\theta}{2}\right)(\vec{\mathbf{p}}\times\vec{\mathbf{n}}) \end{bmatrix}$$

(6)

 Az egység kvaternióhoz hasonlóan definiálható az egység kettős kvaternió. Következésképpen bármely kettős kvaternió megszorozva egység kettős kvaternióval, annak értéke változatlan marad. Egység kettős kvaternió meghatározásakor az első skalár értéke 1 a többi hét skalár értéke 0.

$$\widehat{\boldsymbol{q}} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$
(7)

• Forgatás és eltolás értékekből egység kettős kvaternió az (1) egyenlet alapján a következők szerint definiálható:

$$\widehat{q} = r + \varepsilon s \tag{8}$$

$$s = \frac{1}{2} tr$$

Kettős kvaternió

 Az r a forgatást leíró egység kvaternió és t az eltolást leíró kvaternió, melynek elemei

$$\boldsymbol{r} = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & \boldsymbol{n}_{x} \sin\left(\frac{\theta}{2}\right) & \boldsymbol{n}_{y} \sin\left(\frac{\theta}{2}\right) & \boldsymbol{n}_{z} \sin\left(\frac{\theta}{2}\right) \end{bmatrix}$$

$$\boldsymbol{s} = \begin{bmatrix} 0 & \boldsymbol{t}_{x} & \boldsymbol{t}_{y} & \boldsymbol{t}_{z} \end{bmatrix}$$
(9)

ahol **n** a forgatás tengelye, θ a forgatás szöge és t_x, t_y, t_z jelöli az eltolás koordinátatengely irányú értékeit. A forgatás és eltolás kettős kvaternióval a (7), (8) és (9) egyenletek alapján:

$$\widehat{q} = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & n_x \sin\left(\frac{\theta}{2}\right) & n_y \sin\left(\frac{\theta}{2}\right) & n_z \sin\left(\frac{\theta}{2}\right) \end{bmatrix} \begin{bmatrix} 0 & \frac{t_x}{2} & \frac{t_y}{2} & \frac{t_z}{2} \end{bmatrix}$$

(10)

- A kettős kvaternió az eddig elmondottak alapján nyolc elemből áll, azonban egy 3D objektum transzformálásához hat független változó szükséges, következésképpen a kettős kvaternió nyolc eleméből kettő nem független.
- Amint az a (11) és (12) egyenletekből látható, <u>a kettős kvaternió</u> elemeinek az alábbi két kényszert kell kielégíteniük:

$$\boldsymbol{r}^T \boldsymbol{r} = 1 \tag{11}$$

$$\boldsymbol{r}^T \boldsymbol{s} = \boldsymbol{0} \tag{12}$$

<u>Megjegyezzük,</u> hogy **a kettős kvaterniók az eltolásvektor felével** "dolgoznak", hasonlóan **a klasszikus kvaterniók**hoz, amelyek **a forgászög felével** "dolgoznak".

Kettős kavaternió alkalmazásával a Bursa-Wolf hasonlósági transzformációs modell a következők szerint írható fel

$$\boldsymbol{F}(\boldsymbol{\mu},\boldsymbol{R},\vec{t}) = \sum_{i=1}^{N} \left\| \boldsymbol{\mu} \boldsymbol{R} \vec{\boldsymbol{b}}_{i} + \vec{t} - \vec{\boldsymbol{a}}_{i} \right\|$$
(13)

ahol a közös pontokat leíró helymeghatározó kvaterniók

$$\boldsymbol{a}_{i} = \frac{1}{2} \begin{bmatrix} 0 \\ \vec{a}_{i} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ X_{i} \\ Y_{i} \\ Z_{i} \end{bmatrix} , \quad \boldsymbol{b}_{i} = \frac{1}{2} \begin{bmatrix} 0 \\ \vec{b}_{i} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ X_{i} \\ Y_{i} \\ Z_{i} \end{bmatrix}$$
(14)

a két különböző rendszerben adott közös pontok 3D koordinátáit tartalmazzák, az $N(N \ge 3)$ egész szám a közös pontok száma, $t = (t_x t_y t_z)^T$ jelöli a három eltolás paramétert, μ a méretarány tényező és az **R** a forgatási mátrix.

 Az (5) és (9) egyenlet alapján a kettős kvaternió valós része a teljes forgatás eljárását megadja, amelyhez tartozó forgatási mátrix az alábbiak szerint írható fel

$$\boldsymbol{R} = \left(r_0^2 - \vec{\boldsymbol{r}}^T \vec{\boldsymbol{r}}\right)\boldsymbol{I} + 2\left(\vec{\boldsymbol{r}} \vec{\boldsymbol{r}}^T + r_0 \boldsymbol{K}(\vec{\boldsymbol{r}})\right)^{(15)}$$

ahol az $\mathbf{r}^{T} = [r_{0}, \mathbf{r}] = [r_{0}, r_{1}, r_{2}, r_{3}]$ a forgatást leíró kvaternió, **I** egy 3x3 egységmátrix és a $\mathbf{K}(\mathbf{r})$ 3x3 ferdén szimmetrikus mátrix a következő alakú

$$\boldsymbol{K}(\boldsymbol{r}) = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$
(16)

 (15) egyenletben szereplő *R* forgatási mátrix felírható a kettős kvaternió elemeivel

$$\begin{bmatrix} 1 & \vec{O} \\ \vec{O} & \boldsymbol{R} \end{bmatrix} = \boldsymbol{W}(\boldsymbol{r})^T \boldsymbol{Q}(\boldsymbol{r})$$
(17)

ahol a

$$\boldsymbol{W}(\boldsymbol{r}) = \begin{bmatrix} r_0 & -\vec{\boldsymbol{r}}^T \\ \vec{\boldsymbol{r}} & r_0 I - \boldsymbol{K}(\boldsymbol{r}) \end{bmatrix} \quad \text{és} \quad \boldsymbol{Q}(r) = \begin{bmatrix} r_0 & -\vec{\boldsymbol{r}}^T \\ \vec{\boldsymbol{r}} & r_0 I + \boldsymbol{K}(r) \end{bmatrix} \quad (18)$$

• Az eltolás t vektora úgyszintén kifejezhető kettős kvaternióval

$$\boldsymbol{t} = \boldsymbol{W}(\boldsymbol{r})^T \boldsymbol{s} \tag{19}$$

ahol

$$\boldsymbol{t}^{T} = \frac{1}{2} \begin{bmatrix} 0 & \vec{t}^{T} \end{bmatrix}$$
(20)

Az eddigiek alapján a dátumtranszformáció kettős kvaternióval történő megoldása a következő formában adható meg

$$\boldsymbol{a}_{i} = \boldsymbol{W}(\boldsymbol{r})^{\mathrm{T}}\boldsymbol{s} + \boldsymbol{\mu}\boldsymbol{W}(\boldsymbol{r})^{T}\boldsymbol{Q}(\boldsymbol{r})\boldsymbol{b}_{i}^{(21)}$$

 A (13) egyenlet újra felírható az r és s kvaterniók kvadratikus függvényként. A részletes levezetés megtalható Wang at al. (2014) munkájában.

$$\boldsymbol{F} = \mu \boldsymbol{r}^T \boldsymbol{C}_1 \boldsymbol{r} + N \boldsymbol{s}^T \boldsymbol{s} + \mu \boldsymbol{s}^T \boldsymbol{C}_2 \boldsymbol{r} + \boldsymbol{s}^T \boldsymbol{C}_3 \boldsymbol{r} + \mu^2 \boldsymbol{C}_4 + \boldsymbol{C}_5 \quad (22)$$

ahol a C1, C2, C3 mátrixok továbbá a C4, C5 konstans értékei a következő egyenletekből számíthatók:

$$C_{1} = -2\sum_{i=1}^{N} Q(\vec{a}_{i})^{T} W(\vec{b}_{i})$$

$$C_{2} = 2\sum_{i=1}^{N} W(\vec{b}_{i})$$

$$C_{3} = -2\sum_{i=1}^{N} Q(\vec{a}_{i})$$

$$C_{4} = \sum_{i=1}^{N} (\vec{a}_{i}^{T} \vec{a}_{i})$$

$$C_{5} = \sum_{i=1}^{N} (\vec{b}_{i}^{T} \vec{b}_{i})$$
(23)

 A kényszereket tartalmazó (11) és (12) egyenletek felhasználásával <u>a legjobb</u> <u>kettős kvaternió</u> amely megadja a forgatást a következő hiba függvény minimalizálásával számítható

$$F = \mu \mathbf{R}^T \mathbf{C}_1 \mathbf{r} + N \mathbf{s}^T \mathbf{s} + \mu \mathbf{s}^T \mathbf{C}_2 \mathbf{r} + \mathbf{s}^T \mathbf{C}_3 \mathbf{r} + \mu^2 \mathbf{C}_4 + \mathbf{C}_5 + \lambda_1 (\mathbf{r}^T \mathbf{r} - 1) + \lambda_2 (\mathbf{s}^T \mathbf{r})_i$$

amely függvényben a $\lambda 1$ és $\lambda 2$ jelöli a Lagrange multiplikátor konstansokat. A részletes levezetés elhagyásával a következő egyenleteket kapjuk Wang at al. (2014).

• Az **s** <u>kettős kvaternió</u> az **r** függvényében az alábbiak szerint számítható:

$$\boldsymbol{s} = -\frac{1}{2N} \left(\boldsymbol{\mu} \boldsymbol{C}_2 \boldsymbol{r} + \boldsymbol{C}_3 \boldsymbol{r} \right) \tag{25}$$

(24)

• A μ méretarány szintén meghatározható az r és s függvényeként

$$\mu = -\frac{\boldsymbol{r}^{T}\boldsymbol{C}_{1}\boldsymbol{r} - \left[\frac{1}{2N}\boldsymbol{r}^{T}\boldsymbol{C}_{2}^{T}\boldsymbol{C}_{2}\boldsymbol{r} + \frac{1}{2N}\boldsymbol{r}^{T}\boldsymbol{C}_{3}^{T}\boldsymbol{C}_{2}\boldsymbol{r}\right]}{2\boldsymbol{C}_{4}}$$
(26)

Az r <u>kvaternió</u> az alábbi A mátrix maximális sajátértékéhez tarozó sajátvektoraként számítható

$$\boldsymbol{A} = \frac{1}{N} \boldsymbol{C}_{2}^{T} \boldsymbol{C}_{3} - \left(\boldsymbol{C}_{1} + \boldsymbol{C}_{1}^{T}\right)$$
(27)

A kettős kvaternió alkalmazásán alapuló dátum transzformációs algoritmus megoldása végezetül az alábbiak szerint foglalható össze

- 1) Input adatok a mindkét rendszerben adott közös pontok **a**i és **b**i koordinátái
- 2) A súlypontra vonatkozó koordináták számítása (28) egyenlet,

$$\Delta \boldsymbol{a}_{i} = \boldsymbol{a}_{i} - \boldsymbol{a}_{0} \quad , \quad \Delta \boldsymbol{b}_{i} = \boldsymbol{b}_{i} - \boldsymbol{b}_{0} \tag{28}$$

ahol

$$\boldsymbol{a}_0 = \frac{1}{n} \sum_{i=1}^n \boldsymbol{a}_i, \ \boldsymbol{b}_0 = \frac{1}{n} \sum_{i=1}^n \boldsymbol{b}_i$$

- 3) Az A mátrix számítása a C1, C2 és C3 mátrixok valamint a C4 és C5 konstansok felhasználásával (23) egyenlet. Ezek után számítjuk az A mátrix maximális sajátértékét, és a hozzá tartozó sajátvektort. Eredményként az r forgatást leíró egység kvaterniót kapjuk.
- Ezután a μ <u>méretarány</u> (26) egyenlet és az s <u>eltolást leíró kvaternió</u> (25) egyenlet számítása következik
- 5) Végül az **R** <u>forgatási mátrixot</u> (15) vagy (17) egyenlet, <u>a forgásszögeket</u> (29) egyenlet, és a **t** <u>eltolás paramétert</u> számítjuk (19) egyenlet

• A forgásszögek, az **R** forgatási mátrix elemeiből számíthatók

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \quad , \quad \boldsymbol{\alpha}_{X} = \operatorname{arc} tg\left(\frac{r_{23}}{r_{33}}\right) \quad , \quad \boldsymbol{\beta}_{Y} = \operatorname{arc} sin(-r_{13}) \quad , \quad \boldsymbol{\gamma}_{Z} = \operatorname{arc} tg\left(\frac{r_{12}}{r_{11}}\right)$$

ahol α, β és γ az X, Y és Z tengelyek körüli forgásszögeket jelölik.

 Mivel súlyponti koordináta rendszerben végezzük a számításokat az súlypont koordináták felhasználásával a t <u>eltolás paraméter</u> értékét a (30) egyenlet alapján is kiszámíthatjuk.

$$\boldsymbol{a}_0 = \boldsymbol{t} + \boldsymbol{\mu} \boldsymbol{R} \boldsymbol{\Delta} \boldsymbol{b}_0 \tag{30}$$

(29)

$$\boldsymbol{t} = \boldsymbol{a}_0 - \boldsymbol{\mu} \boldsymbol{R} \boldsymbol{\Delta} \boldsymbol{b}_0 \tag{31}$$

 Behelyettesítve a (19) egyenletbe a (31) egyenletet, rendezés után az s <u>kvaternió</u> a (25) egyenlet helyett egyszerűbben is számítható

$$\boldsymbol{t} = \boldsymbol{W}(\boldsymbol{r})^T \boldsymbol{s} \quad \rightarrow \quad \boldsymbol{s} = \boldsymbol{t} \left[\left[\boldsymbol{W}(\boldsymbol{r})^T \right]^{-1} \right]^T \quad (32)$$

Abból a célból, hogy bemutassuk a (15), (17), (19), (23), (25) és (26) összefüggések érvényességét megismételtük Grafarend és Avange (2003) továbbá Wang at al. (2014) számításait.

Az eredmények teljes egyezést mutatnak úgy a transzformációs paraméterek mind pedig, a transzformált koordináták és maradék ellentmondások tekintetében.

A **T**érbeli **H**elmert transzformáció kettős kvaternióval történő megoldására **J** nyelvű programot készítettük, amely Windows 32 és 64 bites platformon egyaránt futtatható.

NB.======	
NB.	Térbeli HELMERT transzformáció kettős kvaternióval J nyelven
NB.	(J602a) és (J804)
NB.	Bursa-Wolf hasonlósági transzformáció
NB.	Fájlból történő átszámítás
NB.	Ismert transzformációs paraméterek: p''
NB.	Transzformációs paraméterek közös pontok alapján: FKJ tp CKJ
NB.	Új pontok transzformálása : TH KJ
NB.======	

Home Page: www.jsoftware.com

About J J602 - Copyright 1994-2008 Jsoftware Inc., www.jsoftware.com. Installer: j602a_win.exe Engine: j602/2008-03-03/16:45 Library: 6.02.056 This computer program is protected by copyright law and international treaties.

J About J8.0.4

Engine: j804/j64/windows Release: commercial/2015-12-21 16:18:48 Library: 8.04.15 Qt IDE: 1.4.10/5.4.2 Platform: Win 64 Installer: J804 install InstallPath: c:/users/pap0005/j64-804 Contact: www.jsoftware.com

Copyright 1994-2016 Jsoftware

Grafarend és Avange (2003)

Site	Local coordinate sy	Local coordinate system (System A)			WGS84 coordinate system (System B)		
	x	у	Z	x	Y	Z	
Solitude	4157222.543	664789.307	4774952.099	4157870.237	664818.678	4775416.524	
Buoch Zeil	4149043,336	688836.443	4778632.188	4149691.049	688865.785	4779096,588	
Hohenneuffen	4172803,511	690340,078	4758129.701	4173451.354	690369,375	4758594.075	
Kuehlenberg	4177148.376	642997.635	4760764,800	4177796.064	643026,700	4761228.899	
Ex Mergelaec	4137012,190	671808,029	4791128,215	4137659.549	671837,337	4791592,531	
Ex Hof Asperg	4146292.729	666952,887	4783859,856	4146940.228	666982,151	4784324.099	
Ex Kaisersbach	4138759,902	702670.738	4785552,196	4139407,506	702700.227	4786016,645	

Coordinate pairs extracted from the local and WGS84 coordinate systems.

KOORDINÁTA JEGYZÉK

Solitude	4157222.543	664789.307	4774952.099	4157870.237	664818.678	4775416.524
Bouch Zeil	4149043.336	688836.443	4778632.188	4149691.049	688865.785	4779096.588
Hohenneuffen	4172803.511	690340.078	4758129.701	4173451.354	690369.375	4758594.075
Kuehlenberg	4177148.376	642997.635	4760764.800	4177796.064	643026.700	4761228.899
Ex Mergelaec	4137012.190	671808.029	4791128.215	4137659.549	671837.337	4791592.531
Ex Hof Asperg	4146292.729	666952.887	4783859.856	4146940.228	666982.151	4784324.099
Ex Kaisersbach	4138759.902	702670.738	4785552.196	4139407.506	702700.227	4786016.645
			n = 7 közö	js pont		

	A mátrix			
ľ	4840000812.6107607	6797.3602778054774	4449.1045040902682	11326.777577847242
İ	6797.3602778054774	_1830759441.9190657	1718881883.8685288	2336633587.9495964
ĺ	4449.1045040902682	1718881883.8685288	51690149.170300066	825686706.84362614
ļ	_11326.777577847242	_2336633587.9495964	825686706.84362614	_2957551221.5213947

sajátértékek, baloldal	i és jobboldali sajátv	vektorok	
_0.9999999999999182676	3.9126447306007131e_6	_8.9927464923568677e_7	_4.7891704079319941e_7
_2.420431872102207e_6	_0.58473541340706447	0.49123001299988317	_0.64558312449284594
2.1663738401594803e_6	_0.7030732528868926	0.70387664657394755	_0.101220884594855
2.4073178334356714e_6	_0.40468814829125416	_0.51307966314709841	_0.75695228508252765
4840000812.6641178 185	3142281.7415218 _18531	55553.2837615 _48399875	41.1218796
_0.9999999999999182676	3.9126447305208904e_6	_8.9927464923564823e_7	_4.7891704079325023e_7
_2.420431872148934e_6	_0.58473541340706459	0.49123001299988295	_0.64558312449284583
2.1663738402155687e_6	0.70307325288689237	0.70387664657394744	_0.10122088459485468
2.4073178334679565e_6	0.40468814829125405	_0.51307966314709885	_0.7569522850825281

maximális sajátérték

4840000812.6641178

r kvaternió = a maximális sajátértékhez tartozó sajátvektor

_0.999999999999182676 _2.420431872102207e_6 _2.1663738401594803e_6 _2.4073178334356714e_6

R forgatási mátrix		
0.999999999997902367	4.8146251797114124e_6	_4.3327593337811685e_6
_4.8146461539525703e_6	0.999999999997669309	_4.8408533138640897e_6
4.3327360267859272e_6	4.8408741744656066e_6	_0.99999999999788971

μ méretarány

1.0000055825198519

t eltolás

641.88042527344078 68.655345451901667 416.39818478096277

Dual quaternion-based algorithm

Rotation matrix (R)		Translation vector (T)	Scale (μ)
1.00000000 0.000004 -0.000004815 1.000000 0.000004333 0.000004	815 -0.000004333 000 -0.000004841 841 1.000000000	(641.8805, 68.6554, 416.3982)	1.000005583

R forgatási mátrix		
0.99999999997902367	4.8146251797114124e_6	_4.3327593337811685e_6
_4.8146461539525703e_6	0.99999999997669309	_4.8408533138640897e_6
4.3327360267859272e_6	4.8408741744656066e_6	0.9999999999788971

	====:	====:		
		Tran	isziormacios param	leterek
Eltolás			Elforgatás	Méretarány
641.88042527344078	0	0	_0.998497670868	1.0000055825198519
68.65534545190167	0	0	0.893695764500	
416.39818478096277	0	0	0.993087729859	
	====:	====		

Residuals of each site after transformation.

Site	Dual quaternion	-based algorithm	
	Δx	Δy	Δz
Solitude	0.0939	0,1353	0.1402
Buoch Zeil	0.0588	-0.0500	0.0136
Hohenneuffen	-0.0403	-0.0883	-0.0078
Kuehlenberg	0.0197	-0.0213	-0.0872
Ex Mergelaec	-0.0916	0.0140	-0.0059
Ex Hof Asperg	-0.0117	0.0067	-0.0549
Ex Kaisersbach	-0.0292	0.0035	0.0014

=======================================	=======================================	=======================================	=======================================	=======================================	====
		MARADÉK ELLE	NTMONDÁSOK [mm]		
PSZ	ex	ey	ez	е	
Solitude	94	135	140	216	
Bouch Zeil	59	_50	14	78	
Hohenneuffen	_40	_88	_8	97	
Kuehlenberg	20	_22	_87	92	
Ex Mergelaec	_92	14	_5	93	
Ex Hof Asperg	_12	7	_55	56	
Ex Kaisersbach	_29	4	2	30	

		=====		====================	
		Tra	anszformációs para	méterek	
	Eltolás		- Elforgatás	Méretar	ány
641.	.88042527344078	0	0 0.99849767086	8 1.00000558	25198519
68.	65534545190167	0	0 0.89369576450	0	
416	39818478096277	0	0 0.99308772985	9	
=======================================	=======================================		===================	-	
			MARADÉK ELLENT	MONDÁSOK [mm]	
PSZ	ex		ey	ez	е
Solitude	94		135	140	216
Bouch Zeil	59		_50	14	78
Hohenneuffen	_40		_88	_8	97
Kuehlenberg	20		_22	_87	92
Ex Mergelaec	_92		14	_5	93
Ex Hof Asperg	_12		7	_55	56
Ex Kaisersbach	29		4	2	30
		=====			=========================
	Súl	lyegys	ség középhibája: m	0 = 0.07723366	0859330686
		======			
q = r + Es ketté	ős kvaternió				
r		S			
$r0 = _0.99999$	9999999182676000	s0 =	_0.00020124595	950307916	
r1 = _0.00000	242043187210221	s1 =	_320.93984423488	138000000	
r2 = 0.00000	0216637384015948	s2 =	_34.32639618885	393400000	
r3 = 0.00000	0240731783343567	s3 =	_208.19987075258	805000000	

		Térbel ke	:============================= .i HELMERT tr ettős kvaterr	======================================		========
			Közös pont	ok		
PSZ	Forrás rends	szer [x	yz] -> TRA	NSZFORMÁCIÓ -	> Cél rendsz	er [X Y Z]
			ב========= אואדתפססא	======================================		
Solitude	4157222 543 664	789 307	4774952 099	4157870 237	664818 678	4775416 524
Bouch Zeil	4149043 336 6888	36 443	4778632 188	4149691 049	688865 785	4779096 588
Johenneuffen	4172803 511 6903	340 078	4758129 701	4173451 354	690369 375	4758594 075
(uehlenberg	4177148.376 6429	97.635	4760764.800	4177796.064	643026.700	4761228.899
Ex Mergelaec	4137012.190 6718	308.029	4791128.215	4137659.549	671837.337	4791592.531
Ex Hof Aspera	4146292.729 6669	952.887	4783859.856	4146940.228	666982.151	4784324.099
Ex Kaisersbach	4138759.902 7026	570.738	4785552.196	4139407.506	702700.227	4786016.645
			n = 7 kö	zös pont		
		Trai	nszformációs	paraméterek		
	Eltolàs	0 0	Elforgatás	N 1 0000	leretarany	
641	.88042527344078	0 0	_0.99849767	0868 1.0000	055825198519	
68	.65534545190167	0 0	0.89369576	4500		
416	.398184/80962//	0 0	0.99308772	9859 		
			MARADÉK EL	LENTMONDÁSOK	[mm]	
PSZ	ex		ey	ez		е
Solitude	94		135	140		216
Bouch Zeil	59		_50	14		78
Hohenneuffen	_40		_88	_8		97
Cuehlenberg	20		_22	_87		92
Ex Mergelaec	_92		14	_5		93
Ex Hof Asperg	_12		7	_55		56
Ix Kaisersbach	_29		4	2		30
============		======		================	==================	===========
	S	u⊥yegy: 	seg kozephibá	ıja: mu = 0.0 	//2336608593	3U686
			=		===	
q = r + Es ke	ttős kvaternió					
r		s				
r0 = _0.99	999999999182676000) s0 =	_0.000201	2459595030791	.6	
r1 = _0.00	000242043187210223	l s1 =	_320.939844	2348813800000	0	
r2 = 0.00	000216637384015948	3 s2 =	_34.326396	1888539340000	0	
r3 = 0.00	00024073178334356	7 s3 =	_208.199870	752588050000	00	
		=====:				

Wang at al. (2014)

Point features extracted from two neighboring LiDAR point clouds.

No,	Reference station			Reference station Unregistered station		
	x	у	Z	x	у	Z
1	-91.406	53.344	8,320	-49.007	54,453	0,978
2	-91.297	53,222	0.916	-47.365	54,435	-6.242
3	-60.158	24.280	8,948	-36.514	13.733	3.642
4	-60.135	24.278	1.521	-34.881	13.859	-3.608
5	- 56.298	-19.186	5.700	-53.378	-25.872	-4.187
6	-13.269	-2.677	-1.444	-7.324	-32.695	-1.389
7	-4.666	17.245	-1.605	9,587	-19.650	2,449
8	- 49,939	14.297	27.119	-36,532	-0.319	21,980
9	- 52,769	11.523	25,906	-39.932	-1.307	19.965
10	-72,929	-8.630	27.146	-67.051	-8.834	15.017
11	-46.500	-30.291	23.078	-54.124	-40.688	13.216
12	- 52,581	-22.934	5.676	-51.943	-30,962	-3.965
13	- 58.972	-17.511	18.862	-57.712	-23.376	8.397
14	- 55,429	-26.155	23.077	-59.650	-32.625	12.037
15	- 55,313	-26.131	23.039	-59.512	-32.705	12.071
16	-63.467	27.962	26.981	-41.466	18.246	21.085
17	- 57.673	22.069	25,782	-39,133	10.234	20,247
18	-49.687	14.083	-3.666	-29.781	-0.026	-8.062

TH2 program

===					===============		======
				KOORDINÁTA JI	EGYZÉK		
1	_49.007	54.453	0.978	_91.406	53.344	8.320	
2	_47.365	54.435	_6.242	_91.297	53.222	0.916	
3	_36.514	13.733	3.642	_60.158	24.280	8.948	
4	_34.881	13.859	_3.608	_60.135	24.278	1.521	
5	_53.378	_25.872	_4.187	_56.298	_19.186	5.700	
6	_7.324	_32.695	_1.389	_13.269	_2.677	_1.444	
7	9.587	_19.650	2.449	_4.666	17.245	_1.605	
8	_36.532	_0.319	21.980	_49.939	14.297	27.119	
9	_39.932	_1.307	19.965	_52.769	11.523	25.906	
10	_67.051	_8.834	15.017	_72.929	_8.630	27.146	
11	_54.124	_40.688	13.216	_46.500	_30.291	23.078	
12	_51.943	_30.962	_3.965	_52.581	_22.934	5.676	
13	_57.712	_23.376	8.397	_58.972	_17.511	18.862	
14	_59.650	_32.625	12.037	_55.429	_26.155	23.077	
15	_59.512	_32.705	12.071	_55.313	_26.131	23.039	
16	_41.466	18.246	21.085	_63.467	27.962	26.981	
17	_39.133	10.234	20.247	_57.673	22.069	25.782	
18	_29.781	_0.026	_8.062	_49.687	14.083	_3.666	
				n = 18 közös	pont		

A mátrix			
18959.85444877778	_214.38010388888878	2032.9112862222223	9781.7721873333339
_214.38010388888878	9107.9632554444452	_3745.298692000003	_2132.828107111111
2032.9112862222223	_3745.298692000003	5194.5903638888904	_1512.8409907777782
9781.7721873333339	_2132.828107111111	_1512.8409907777782	_15046.481557222225

sajátértékek, baloldali és jobboldali sajátvektorok

_0.9611777758345228	0.24754192098248473	0.083230631518981357	0.089067067848070738
0.036681390786963967	_0.25466018309102495	0.93964274280843973	0.22555305940157894
_0.10309160306701531	_0.1209704115139959	0.2031575900673446	_0.96616006671422539
_0.25330590239630596	_0.92695056396901843	_0.26243317523212017	0.087906770537306583

21763.935590130524 18442.082351569399 9341.0348106536367 6019.1815720925424

 $\begin{array}{c} 0.9611777758345228 \\ 0.036681390786964016 \\ 0.25466018309102473 \\ 0.10309160306701531 \\ 0.12097041151399587 \\ 0.25330590239630596 \\ \end{array} \begin{array}{c} 0.224754192098248479 \\ 0.083230631518981385 \\ 0.93964274280843962 \\ 0.20315759006734457 \\ 0.20315759006734457 \\ 0.96616006671422539 \\ 0.26243317523212045 \\ 0.087906770537306556 \end{array}$

maximális sajátérték

21763.935590130524

r kvaternió = a maximális sajátértékhez tartozó sajátvektor

_0.9611777758345228 0.036681390786963967 _0.10309160306701531 0.25330590239630596

R forgatási mátrix		
0.85041648237653222 0.47938092098416463	_0.49450709449998764 0.86898119076225433	0.17959548989745161 0.12274209831100616
_0.2167619410752254	_0.018287252133517763	0.97605319389401402

t eltolás	
-----------	--

_22.96560847319914 29.396248211336868 2.2651953650426488

Dual quaternion-based algorithm

Rotation matrix (R)	Translation vector (T)	Scale factor (s)
$\begin{bmatrix} 0.850416493 & -0.494507078 & 0.179595486 \\ 0.479380907 & 0.868981201 & 0.122742085 \\ -0.216761931 & -0.018287246 & 0.976053196 \end{bmatrix}$	-22.9656, 29.3962, -2.2652	1.000385435
R forgatási mátrix		
0.85041648237653222 0.49450709449	998764 0.17959548989745161	
0.47938092098416463 0.86898119076	225433 0.12274209831100616	
_0.2167619410752254 _0.018287252133	517763 0.97605319389401402	
Ti	ranszformációs paraméterek	
Eltolás	Elforgatás Méretarány	
_22.96560847319914 7 1	0 3.072626208203 1.00038544239618	362
29.39624821133687 _10 _2	0 _46.316865945584	
_2.26519536504265 _30 _1	0 _38.975171224272	

======	=======================================				====
	T1 Eltolás _22.96560847319914 29.3962482113368 _2.26519536504269	canszformáci El 4 7 10 7 _10 _20 _4 5 _30 _10 _3	ós paraméterek forgatás 3.072626208203 1 46.316865945584 38.975171224272	Méretarány .0003854423961862	
	MARADÉK ELI		 [mm]		
PSZ	ex	ev	ez	e	7~
1	14	7	1	16	(1)
2	14	14	1	20	
3	11	9	_10	17	-
4	10	5	_1	11	
5	32	21	5	39	0
б	3	32	_9	33	
7	_17	33	_12	39	R
8	_1	_1	_5	б	
9	_65	_39	_6	76	2
10	12	_35	47	60	2
11	9	17	_42	46	
12	_30	_18	_17	39	-
13	19	60	_14	64	
14	_19	_62	57	86	
15	_66	_39	14	78	
16	14	1	0	14	
17	10	57	_21	61	
L8	50	_19	13	55	
====== S [.]	úlyegység középhibája:	m0 = 0.0301	47998487098711		
====== q = r +	Es kettős kvaternió				
r	0.0011000000000000000000000000000000000	S	1		
rU =		JU SU =	_1.649564/2/6411856	0000	
r⊥ =	0.0366813907869639670	JU sI = 1	4.8768991373183630	0000	
r2 =	_0.1030916030670153100	$00 \ s2 = -1$	1.1773028894372160	0000	
r3 =	_0.2533059023963059600)0 s3 =	0.4439946591007347	7000	
	=======================================			=======================================	====

Térbeli HELMERT transzformáció

			kettős k	vaternióval		
			Közö	os pontok		
PSZ	For	rás rendszer [x	уz] ->	TRANSZFORMÁCIÓ) -> Cél ren	dszer [X Y Z]
				KOORDI	NÁTA JEGYZÉ	K
1	_49.007	54.453	0.978	_91.406	53.344	8.320
2	_47.365	54.435	_6.242	_91.297	53.222	0.916
3	_36.514	13.733	3.642	_60.158	24.280	8.948
4	_34.881	13.859	_3.608	_60.135	24.278	1.521
5	_53.378	_25.872	_4.187	_56.298	_19.186	5.700
б	_7.324	_32.695	_1.389	_13.269	_2.677	_1.444
7	9.587	_19.650	2.449	_4.666	17.245	_1.605
8	_36.532	_0.319	21.980	_49.939	14.297	27.119
9	_39.932	_1.307	19.965	_52.769	11.523	25.906
10	_67.051	_8.834	15.017	_72.929	_8.630	27.146
11	_54.124	_40.688	13.216	_46.500	_30.291	23.078
12	_51.943	_30.962	_3.965	_52.581	_22.934	5.676
13	_57.712	_23.376	8.397	_58.972	_17.511	18.862
14	_59.650	_32.625	12.037	_55.429	_26.155	23.077
15	_59.512	_32.705	12.071	_55.313	_26.131	23.039
16	_41.466	18.246	21.085	_63.467	27.962	26.981
17	_39.133	10.234	20.247	_57.673	22.069	25.782
18	_29.781	_0.026	_8.062	_49.687	14.083	_3.666
				n = 18	8 közös pont	5
		Tr	anszformá	iciós paraméter	rek	
		Eltolás	1	Elforgatás	Mére	etarány
	_22	2.96560847319914	7 10	3.0726262082	203 1.0003	854423961862
	29	0.39624821133687	_10 _20	_46.3168659455	584	
	_2	2.26519536504265	_30 _10	_38.9751712242	272	
				MARADÈK ELLI	ENTMONDÀSOK	[mm]
P	SZ	ex	ey	e	Z	е
1		14	_7		1	16
2		14	_14	-	1	20
3		11	9	_10	0	17
4		10	5	-	1	11
5		32	21		5	39
6		3	32		9	33
7		_17	33	_11	2	39
8		_1	_1	_	5	6
9		_65	_39		6	76
10		12	_35	4	7	60
11		9	1/	_4	2	46
12		_30	_T8	_1	1	39
13		19	60	_1'	4	04
14		_19	_62	5	1	80 70
15		_00	_39	14	* 0	/ ठ 1 /
10		10	1		1	⊥*± ⊂1
1 / 1 0		10	5/ 10	_2	2 1	01 55
±0		JU		1. 	J 	رر
			===================================	=	8487009711	
	ء =========		aja• ॥ 			

BO

Ш

ï

ii.

Ш

ii

ii. Ш 11 Ш Ш Ш ü Ш ii ii 11 ш 11

Ш Ш ii ii. ii II II

ii II II

ii II II

ï ii. Ш ii II Ш ii II 11 ii. 11 ii.

Ш

|| ||

Ш

ii

ii. 11

Ш

ü II.

Ш ij. II.

Ш 11

Ш Ш

Ш $^{+}$ ii II

11

11

kvaternió ii.

kettős

ы С || ||

ы Ш

Ш ii

Ш

ï

Ш 11

Ш

ш

11

ш

Ш

ш

ш

ш

ш

ш

ш

ш

ш

ш

ш

ш

ш

Ш

11

_1.64956472764118560000 14.87689913731836300000 _11.17730288943721600000 0.44399465910073477000

_0.9611777583452280000 = 0.03668139078696396700 = _0.10309160306701531000 = _0.25330590239630596000 =

. 1010 - 10 1110 - 10

821 821 832 832

- Egy merev test 3D térbeli transzformációja, különösen a térbeli tájékozás az egyik legfontosabb és legkritikusabb feladat a geodéziában, fotogrammetriában, navigációban, a lézerszkenner és LiDAR mérések feldolgozásában, robotkar manipulálásában, az animációban, többek között.
- Jelenleg a térbeli forgatások meghatározásának legnépszerűbb módszere a forgatási mátrix, Euler szögek, Rodrigez vektor és kvaterniók alkalmazása.
- A forgatási mátrix újranormalizálása nehézkes, az Euler szögek alkalmazása szingularitásokhoz vezet és a Rodrigez vektorok alkalmazása sem valósítható meg egy egyszerű számítási algoritmussal.

- Kvaterniók alkalmazása látszik megfelelőnek a 3D forgatás leírásához kevés számú paraméterrel.
- Egységkvaterniót alkalmazva a térbeli forgatás leírására, hét transzformációs paramétert kell meghatároznunk, nevezetesen először a három forgásszöget, ezután a méretarány paramétert, és végül a három eltolás vektort.
- Az előadásban bemutatott módszer kettős kvaterniót alkalmaz a térbeli forgatási mátrix és az eltolásvektor meghatározásához.
- Ismerteti a kettős kvaternió alapú geodéziai dátumtranszformáció
 megoldását linearizálással a Bursa-Wolf dátumtranszformációs modellben.

- Zárt képlet felhasználásával, a kettős kvaternió valós és kettős részének meghatározásával számítottuk az elforgatást és az eltolást, azaz hat transzformációs paraméter értékét szimultán határoztuk meg.
- Bemutattuk a feladat megoldásához felhasznált módszert, és egyenleteket.
- Az eljárás hatékonyságát és alkalmazhatóságát 7 közös pont esetében helyi és WGS84 koordináta rendszerek közötti, továbbá 18 közös pont esetén szomszédos LiDAR álláspontok közötti transzformáción teszteltük.
- A számítások azt mutatják, hogy a kettős kvaternió gyors és megbízható eredményt ad.

- Ennek az algoritmusnak a legnagyobb előnye, hogy tetszőleges nagyságú szögelfordulások esetében is alkalmazható a transzformációs paraméterek számításához.
- A bemutatott megoldás eredményeként az r kvaternió r₀, r₁, r₂, r₃ elemeit egy valódi szimmetrikus mátrix sajátvektorához tartozó maximális sajátértékének meghatározásával számítjuk.

Befejezésként megállapíthatjuk, hogy a kettős kvaternió felhasználásán alapuló algoritmus alkalmas a hasonlósági transzformáció paramétereinek számításához.

A bemutatott megoldás egy új választható módszer a hasonlósági transzformáció rövid leírására.

KVATERNIÓ TRILÓGIA

2013 GEODÉZIAI DÁTUMTRANSZFORMÁCIÓ KVATERNIÓVAL

2015 GEODÉZIAI DÁTUMTRANSZFORMÁCIÓ ITERÁCIÓS MEGOLDÁSA KVATERNIÓVAL

2017 KETTŐS KVATERNIÓVAL GEODÉZIAI ALKALMAZÁSA

Hamilton-féle kvaternió négy skalár változó

 $\boldsymbol{Q} = \boldsymbol{q}_0 + \boldsymbol{q}_1 \boldsymbol{i} + \boldsymbol{q}_2 \boldsymbol{j} + \boldsymbol{q}_3 \boldsymbol{k} = \boldsymbol{q}_0 + \boldsymbol{q}$ valós komplex

kettős rész

Clifford-féle kettős kvaternió

nyolc skalár válzozó

 $\widehat{\boldsymbol{q}} = \boldsymbol{r} + \underbrace{\boldsymbol{k}}_{kettős művelet (dual operator)}$

 $\widehat{q} = \left| \cos\left(\frac{\theta}{2}\right) - n_x \sin\left(\frac{\theta}{2}\right) - n_y \sin\left(\frac{\theta}{2}\right) - n_z \sin\left(\frac{\theta}{2}\right) \right| \left| 0 - \frac{t_x}{2} - \frac{t_y}{2} - \frac{t_z}{2} \right|$

Térbeli Helmert-féle transzformáció

Klasszikus

 $\boldsymbol{a}_{0} = \boldsymbol{t} + \mu \boldsymbol{R} \Delta \boldsymbol{b}_{0}$

Kettős kvaternióval

$$\boldsymbol{a}_{i} = \boldsymbol{W}(\boldsymbol{r})^{T}\boldsymbol{s} + \boldsymbol{\mu}\boldsymbol{W}(\boldsymbol{r})^{T}\boldsymbol{Q}(\boldsymbol{r})\boldsymbol{b}_{i}$$

Friedrich Robert Helmert (1843-1917)

- Awange JL, Grafarend EW (2005): Solving Algebric Computational Problems in Geodesy and Geoinformatics, The answer to modern Challanges. Springer, Berlin, Heidelberg, New York.
- Chasles M, (1830): Note sur les propriétés du système de deux corps semblables entr'uux et placés d'une maniére quelconque dans l'espece; et sur le déplacement finl ou infiniment petit d'un corps solide libre. Bull Sci. Math. Astron. Phys. Chim. 14(XIV), 321-326
- W.K. Clifford (1873): Preliminary sketch of biquaternions. Proc. London Math. Soc, 4:381-395
- W.K. Clifford (1882): Mathematical Papers. Macmillan, London

Grafarend EW, Awange LJ (2003): Nonlinear analysis of the threedimensional datum transformation [conformal group C7(3)]. J. Geod. 77, 66–76.

Hamilton WR (1844): On quaternions, or on a new system of imaginaries algabra. Phil. Mag. 25(3), 489-495

Hamilton WR (1853): Lectures on quaternions: containing a systematic statement of a New mathematical method. Hodges and Smith, Dublin.

Horn BKP (1987): Closed-form solution of absolut orientation using unit quaternions. J. Opt. Soc. Am. A, 4(4), 629-642.

Molodenskii M, Eremeev V, M.I., Y (1962): Methods for study of the external gravitational field and figure of the earth. Israel Program for Scientific Translations, Jerusalem

R. M Murray, S. S. Sastry, L. Zexiang (1994): A Mathematical Introduction to Robotic Manipulation. CRC Press, USA, ISBN 0-849-37981-4.

Prosková J, (2011): Application of dual quaternions algoritms for geodetic datum transformation. J. Appl. Marh. 4(2), 225-236

Prosková J, (2012): Discovery of dual quaternions for geodesy. J. Geometry Graphics 16(2), 195-209

Shan YZ, Chen Y, Zheng DH (2006): A quaternion-based geodetic datum transformation algorithm. J. Geod. 80, 233–239.

Vanícek P, Steeves RR (1996): Transformation of coordinates between two horizontal geodetic datums. J. Geod., 70, 740-745

Vanícek P, Novák P, Craymer MR, Pagiatakis S (2002): On the correct determination of transformation parameters of a horizontal geodetic datum. Geomatica, 56(4), 329–340.

Yang Y (1999): Robust estimation of geodetic datum transformation. J. Geod., 73, 268-274.

Yangbo Wang, Yunjia Wang, Kan Wu, Huachao Yang, Hua Zhang (2014): A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 94, 63-69

Zeng H, Yi Q (2011): Quaternion-Based Iterative Solution of Three-Dimensional Coordinate Transformation Problem. J. of Computers, 6(7), 1361-1368.

